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Abstract—We present the optimal design of a spectral method
widely used to initialize nonconvex optimization algorithms for
solving phase retrieval and other signal recovery problems. Our
work leverages recent results that provide an exact characteri-
zation of the performance of the spectral method in the high-
dimensional limit. This characterization allows us to map the
task of optimal design to a constrained optimization problem
in a weighted L

2 function space. The latter has a closed-form
solution. Interestingly, under a mild technical condition, our
results show that there exists a fixed design that is uniformly opti-
mal over all sampling ratios. Numerical simulations demonstrate
the performance improvement brought by the proposed optimal
design over existing constructions in the literature. In a recent
work, Mondelli and Montanari have shown the existence of a
weak recovery threshold below which the spectral method cannot
provide useful estimates. Our results serve to complement that
work by deriving the fundamental limit of the spectral method
beyond the aforementioned threshold.

Index Terms—Spectral initialization, phase retrieval, signal
estimation, nonconvex optimization, phase transition, optimal
spectral methods

I. INTRODUCTION

An active line of recent work studies nonconvex optimiza-

tion algorithms for solving the classical phase retrieval prob-

lem (see, e.g., [1]–[8]). Compared to methods using convex

relaxation [9]–[12], the nonconvex approaches tend to require

much lower computational complexity and memory footprints.

A key ingredient in many such algorithms is a simple yet

highly effective spectral method [1], [3], [13]. It provides an

initial estimate that is sufficiently close to the target signal.

Starting from this “warm start”, local search schemes such as

gradient descent can then carry out further refinement to reach

globally optimal solutions.

This paper studies the optimal design of the aforementioned

spectral method. Throughout the paper, we consider the fol-

lowing sensing model. Let ξ ∈ C
n denote the target signal

we seek to estimate, and {ai ∈ C
n}1≤i≤m be a collection

of sensing vectors. Given si = 〈ai, ξ〉, the ith measurement

yi ∈ R is drawn independently from

yi ∼ p
(

y
∣

∣ |si|
)

, 1 ≤ i ≤ m, (1)

where p(· | ·) is a conditional density function modeling the

(potentially noisy) sensing process. Clearly, the phase infor-

mation of si is missing, as yi only depends on the magnitude
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of si. The spectral method we study consists of two simple

steps [1], [3], [13]. First, construct a data matrix as

D
def
=

1

m

m
∑

i=1

T (yi)aia
∗
i , (2)

where T : R 7→ R is a user-specified preprocessing function,

and a∗
i denotes the conjugate transpose of ai. Second, we

compute x1, an eigenvector associated with the largest eigen-

value of D. The vector x1 is then our initial estimate of ξ

(up to an unknown scalar).

The idea of this spectral method first appeared in the statis-

tics literature under the name of principal Hessian directions

[13]. In the context of phase retrieval, it was introduced by

Netrapalli, Jain, and Sanghavi as an initialization step for

their alternating minimization algorithm [1]. Finite sample

performance analysis of the spectral method can be found

in [1]–[3]. Under Gaussian design, the squared correlation

between the eigenvector x1 and the target vector ξ is shown

to approach 1 with high probability, when the number of

samples m is sufficiently large with respect to the signal

dimension n. In particular, by introducing a trimming step on

the measurements (see (4) below), Chen and Candes [3] show

that it suffices to have m ≥ c ·n, where c is some sufficiently

large constant.

In [14], Lu and Li presented an asymptotically exact

characterization of the performance of the spectral methods.

Specifically, under Gaussian design and when m,n→ ∞ at a

fixed ratio α = m/n, they show that the squared correlation

between ξ and x1 converges in probability to a deterministic

value, i.e.,
∣

∣〈ξ,x1〉
∣

∣

2

‖ξ‖2‖x1‖2
P−−−−→

n→∞
ρ(α; T (·)). (3)

Moreover, explicit formulas are available to compute the limit

value ρ(α; T (·)). [See Section III-A for details.] The above

asymptotic characterization was first derived for the real-

valued case and under the assumption that T (y) ≥ 0 [14].

Then Mondelli and Montanari generalize the characterization

to the complex-valued case in [15], where the assumption that

T (y) be nonnegative is also shown to be unnecessary.

The performance of the spectral method depends heavily

on the form of the preprocessing function T (·) used in (2).

(Accordingly, on the right-hand side of (3), our notation for

the limit squared correlation ρ(α; T (·)) makes its dependence

on T (·) explicit.) Several designs have been proposed in the

literature, including the trimming scheme introduced in [3]:

Ttrim(y) = y 1{|y|≤a}, (4)
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and the subset scheme proposed in [6]:

Tsubset(y) = 1{|y|≥b}. (5)

In (4) and (5), 1{·} denotes the indicator function on a set,

and a, b are some tuning parameters. See also [5] for yet

another design that improves the robustness of the method

in the presence of outliers.

While the existing designs in the literature are all based on

sound intuitions (and ingenuity), they are not expected to be

optimal. Equipped with the exact asymptotic characterizations

obtained in [14], [15], we now have the luxury to ask the

following question: given any specific sensing model in (1),

what is the corresponding optimal form of the preprocessing

function? Specifically, we consider the following optimal

design problem:

ρoptimal(α)
def
= sup

T (·)∈F
ρ(α; T (·)), (6)

where ρ(α; T (·)) is the limit squared correlation in (3), and F
denotes a set of admissible functions from which we search

for the optimal one. The exact definition of F will be given

in (17) in Section II. It serves to restrict the search space to

make sure that the asymptotic predictions obtained in [14],

[15] are applicable. In what follows, we refer to ρoptimal(α)
as the optimal performance curve.

The first result addressing the optimal design problem was

obtained by Mondelli and Montanari [15], who show that

ρoptimal(α) = 0, for α ≤ αweak, (7)

where αweak is a fundamental threshold (referred to as the

weak recovery threshold in this paper). Given the definition of

ρoptimal(α), the result in (7) implies that, when the sampling

ratio α ≤ αweak, the spectral method cannot provide any

estimate that has nontrivial correlation with the target vector

ξ, no matter how one chooses the preprocessing function.

Moreover, Mondelli and Montanari show that

ρoptimal(α) > 0, for α > αweak. (8)

They establish this by constructing a specific preprocessing

function, denoted by TMM(·), such that

ρ(α; TMM(·)) > 0 for α > αweak.

For any sensing model (1), explicit formulas are provided in

[15] to compute αweak and TMM(·). We defer such technical

details to Section II [see (13) and (14)].

We note that, while the preprocessing functions TMM(·)
serve to show that the optimal performance curve ρoptimal(α)
is strictly positive when α > αweak, these functions do

not solve the optimization problem in (6). Thus, important

questions remain as to what ρoptimal(α) should be beyond

αweak and whether there are optimal preprocessing functions

that can potentially achieve this bound.

In this paper, we present a complete solution of the optimal

design problem formulated in (6). Specifically, we provide

an exact analytical expression for ρoptimal(α) for all α > 0
and for any sensing model. Moreover, under a mild technical

condition (which is satisfied by many sensing models), we con-

struct an optimal preprocessing function Toptimal(·) that solves

the design problem. Somewhat surprising about the optimal

solution is the fact that Toptimal(·) does not depend on the

sampling ratio α. In other words, the proposed Toptimal(·) is

uniformly optimal for all α. Finally, when the aforementioned

technical condition does not hold, we show that the supremum

in (6) cannot be achieved by any function in the admissible

set F . In this case, we construct a family of preprocessing

functions T ε
α (·) whose performance will approach ρoptimal(α)

as a parameter ε→ 0.

The rest of the paper is organized as follows. Our main

results are stated as Theorem 1 in Section II. To illustrate

these results, we present worked examples corresponding to

two different sensing models. Numerical simulations demon-

strate the performance improvements brought by the proposed

optimal design over heuristic choices given in (4) and (5) as

well as the function TMM(·) constructed in [15]. To set the

stage for proving our results, Section III recalls the asymptotic

characterization of the spectral method obtained in previous

work [14], [15]. This characterization allows us to map the

optimal design problem in (6) to a (constrained) optimization

problem in a weighted L2 function space. The proof of

Theorem 1 is given in Section IV. Although we state and prove

our results for the more general complex-valued case in this

paper, the treatment of the real-valued case is the same, mutatis

mutandis. See Remark 3 in Section II for an explanation of

these changes.

II. MAIN RESULTS

We start by introducing two functions that will play central

roles in our later technical discussions. Let

S ∼ CN (0, 1) (9)

be a standard complex normal random variable. Define

η(y)
def
= ES

[

p
(

y
∣

∣ |S|
)]

(10)

and

µ(y)
def
= ES

[

|S|2 p
(

y
∣

∣ |S|
)]

, (11)

where p(·|·) is the conditional density function associated with

the sensing model in (1). It is easy to verify that
∫

η(y) dy =

∫

µ(y) dy = 1. (12)

The results of this paper as well as those of [15] can

be conveniently stated in terms of these two functions. For

example, the weak recovery threshold αweak introduced in [15]

can be written as

αweak
def
=

[

∫

[µ(y)− η(y)]2

η(y)
dy

]−1

. (13)

Moreover, the preprocessing function constructed in [15] is

TMM(y)
def
=

√
αweak T ∗(y)√

α− (
√
α−√

αweak)T ∗(y)
, (14)

for α > αweak, where

T ∗(y)
def
= 1− η(y)/µ(y). (15)

In Appendix A, we show that the integral on the right-

hand side of (13) is always finite. Moreover, αweak ≥ 1 under
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any sensing model with complex-valued Gaussian design, and

the lower bound is achieved by the case of noiseless phase

retrieval, i.e., yi =
∣

∣〈ai, ξ〉
∣

∣

2
. (For the real-valued case, the

lower bound reduces to αweak ≥ 1/2.)

A. Optimal Design

Our optimal design of the preprocessing function lever-

ages the asymptotic characterizations given in [14], [15],

which are derived under some technical assumptions on T (·).
Specifically, let Y be a random variable whose conditional

distribution given S is

Y |S ∼ p
(

y
∣

∣ |S|
)

. (16)

Let ΓY denote the support of the probability measure of Y .

We shall assume that the preprocessing function T (y) belongs

to the following admissible set:

F def
=

{

T (y) : 0 < sup
y∈ΓY

T (y) <∞ and inf
y∈ΓY

T (y) > −∞
}

.

(17)

In words, we require that T (y) should have a bounded range

and that the upper boundary of that range should be positive.

Theorem 1: Suppose that the target signal ξ is an

arbitrary vector in C
n with ‖ξ‖ = 1, and that the

sensing vectors {ai}1≤i≤m are drawn independently from

the circularly-symmetric complex normal distribution, i.e.,

ai ∼i.i.d. CN (0, In). As m,n→ ∞ with m/n→ α ∈ (0,∞),
the following hold with respect to the optimal design problem

in (6):

1) For each α > αweak, let βα denote the unique positive

solution of the equation f(β) = 1/α, where

f(β)
def
=

∫

ΓY

[µ(y)− η(y)]2

η(y) + µ(y)/β
dy. (18)

Then

ρoptimal(α) =

{

(1 + βα)
−1, for α > αweak,

0, otherwise.
(19)

2) Assume αweak < ∞. If infy∈ΓY

µ(y)
η(y) > 0, the optimal

performance curve ρoptimal(α) can be achieved by

Toptimal(y) = 1− η(y)/µ(y) ∈ F . (20)

3) Assume αweak < ∞. If infy∈ΓY

µ(y)
η(y) = 0,

then ρoptimal(α) cannot be achieved by any function

T (·) ∈ F . However, there exists a family of functions
{

T ε
α (·) ∈ F

}

0<ε<1
such that

lim
ε→0

ρ(α; T ε
α (·)) = ρoptimal(α).

4) As an explicit construction of such a family, we can set

T ε
α (y) =

cεα(y)
1+cεα(y) , where

cεα(y) = max

{

vεα
µ(y)− η(y)

η(y) + µ(y)/βα
,−1 + ε

}

. (21)

Here, βα is the same constant as in (19), and vεα ≥ 1
is a scalar that can be uniquely determined by the linear

constraint
∫

ΓY
cεα(y)[µ(y)− η(y)] dy = 1/α.

Remark 1: Theorem 1, whose proof is given in Section IV,

provides a complete solution to the optimal design problem

formulated in (6). As mentioned earlier, when infy∈ΓY

µ(y)
η(y) >

0, the preprocessing function Toptimal(·) given in (20) is

uniformly optimal, as it does not depend on the sampling ratio

α. We also note that there is a strong connection between

Toptimal(·) and the function TMM(·) designed in [15]. In fact,

Toptimal(·) is exactly equal to T ∗(·) in (15). Thus, from

a practical perspective, our results have a simple message:

instead of following the recipe of (14), which modifies the

preprocessing function for different values of α, one should

just use a fixed optimal function.

Remark 2: From the definitions given in (10) and (11), one

can readily verify that Toptimal(y) = 1 − η(y)/µ(y) = 1 −
1/ES|Y

[

|S|2 | y
]

. This connection between Toptimal(·) and

the scalar conditional mean estimator ES|Y
[

|S|2 | y
]

is very

intriguing and might be worth further investigation.

Remark 3 (The real-valued case): The results of Theorem 1

can be directly applied to the real-valued case, after we make

the following changes: (1) In the definitions of η(y) and

µ(y) in (10) and (11), the random variable S is now drawn

from N (0, 1) instead of CN (0, 1); (2) In the statement of

Theorem 1, we shall assume ξ ∈ R
n and that the sensing

vectors ai ∼i.i.d. N (0, In).

B. Worked Examples

To show how the results stated in Theorem 1 can be applied

in practice, we present two worked examples corresponding to

two different sensing models.

Example 1 (Poisson measurements): Here we consider the

Poisson model, where

yi ∼ Poisson
(

κ ·
∣

∣〈ai, ξ〉
∣

∣

2 )
,

and κ > 0 is an additional parameter indicating the signal-to-

noise ratio in the sensing process. Note that the measurements

{yi} here are nonnegative integers instead of continuous

variables. Theorem 1 still applies. We just need to understand

the integration in (18) as summations.

Let Z = |S|2, with S defined as in (9). It is well-known

that Z follows the exponential distribution with parameter 1.

Using this property, we can compute the function in (10) as

η(y) = EZ

[

e−κZ(κZ)y

y!

]

=
κy

y!

∫ ∞

0

e−κzzye−z dz =
κy

(κ+ 1)y+1
. (22)

Similarly, the function in (11) becomes

µ(y) =
κy(y + 1)

(κ+ 1)y+2
. (23)

Since y only takes nonnegative integer values,

inf
y

µ(y)

η(y)
= inf

y

y + 1

κ+ 1
=

1

κ+ 1
> 0.

It then follows from Theorem 1 that there exists a uniformly

optimal preprocessing function, which in our case is

Toptimal(y) = 1− κ+ 1

y + 1
=
y − κ

y + 1
. (24)
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Substituting (22) and (23) into (13), we get

αweak =

[ ∞
∑

y=0

[µ(y)− η(y)]2

η(y)

]−1

=

[ ∞
∑

y=0

κy(y − κ)2

(κ+ 1)y+3

]−1

= 1 + 1/κ.

Finally, the function f(β) in (18) can be calculated as

f(β) =
β

(κ+ 1)2

∞
∑

y=0

(

κ

κ+ 1

)y
(y − κ)2

y + β(κ+ 1) + 1

=Cβ,κ

∫ κ
κ+1

0

xβ(κ+1)

1− x
dx− β(β + 1), (25)

where Cβ,κ = β(β+1)2(1+ 1
κ )
β(κ+1)+1. In reaching (25) we

have used the identities that
∫ v

0

xu

1− x
dx =

∞
∑

y=0

∫ v

0

xu+y dx =
∞
∑

y=0

vy+u+1

y + u+ 1
,

for any u > 0 and 0 < v < 1. In our case, we choose u =
β(κ+ 1) and v = κ/(κ+ 1).

Figure 1 shows the function f(β) for κ = 5. From its

definition in (18), it is easy to verify that f(β) is strictly

increasing, and that limβ→0+ f(β) = 0 and limβ→∞ f(β) =
1/αweak. It follows that, for each α > αweak, there is

a unique βα > 0 satisfying the equation f(βα) = 1/α.

Applying Theorem 1, the optimal performance curve is simply

ρoptimal(α) = (1 + βα)
−1.

In Figure 2, we compare the proposed optimal preprocessing

function in (24) against the the trimming scheme in (4), the

subset scheme in (5), as well as TMM(·) in (14). In our

experiments, the signal dimension is set to n = 4096 and

κ = 5. For each given α, we set the parameter a in (4) to

be the optimal integer choice within {1, 2, . . . , 50}. For (5),

its parameter b is tuned in the same way. For our optimal

design, its theoretical curve is given by ρoptimal(α); for the

other three functions, we use the asymptotic predictions to be

detailed in Section III-A to evaluate their theoretical curves.

Simulations results in the figure show the averages over 16

independent trials, with the error bars indicating ±1 standard

deviation. The figure clearly demonstrates the improvement

brought by the optimal design. In particular, we can see that

the optimal preprocessing function (24) achieves the upper

bound ρoptimal(α). Its performance dominates that of (4), (5),

and (14) uniformly over all α.

Example 2 (The Gaussian channel): In the second example,

we consider a sensing model with Gaussian noise:

yi = max
{
∣

∣〈ai, ξ〉
∣

∣

2
+ wi, 0

}

,

where wi ∼i.i.d. N (0, σ2). When σ2 > 0, we have

η(y) =

{

exp
(

σ2

2 − y
)

Φ
(

y
σ − σ

)

, if y > 0,

η0 δ(y), if y = 0,

and

µ(y) =







(y − σ2)η(y) + σ√
2π

exp
(

− y2

2σ2

)

, if y > 0,

µ0 δ(y), if y = 0,

β

10−3 10−2 10−1 100 101 102 103

f(β)

0

0.2

0.4

0.6

0.8 1/αweak

1/α

βα

Fig. 1. The function f(β) in (25) for κ = 5. Here, limβ→∞ f(β) =
1/αweak = 5/6. For any α > αweak, there is a unique positive solution βα

to the equation f(β) = 1/α.

α = m/n
0 1 2 3 4 5 6 7 8

Squared Correlation

0

0.2

0.4

0.6

0.8

1
Toptimal(·)
TMM(·)
Tsubset(·)
Ttrim(·)

Fig. 2. Analytical predictions and numerical simulations for the Poisson chan-
nel with different preprocessing functions. Toptimal(·) denotes the optimal
function given in (24). It is compared against the trimming scheme in (4),
the subset scheme in (5), as well as TMM(·) in (14). Numerical results are
averaged over 16 independent trials.

where Φ(·) is the CDF of the standard normal distribution, δ(·)
denotes the Dirac delta function, and η0, µ0 are two numerical

constants defined as

η0
def
=

∫ ∞

0

Φ
(

− z/σ)e−z dz =
1

2
− eσ

2/2Φ(−σ) (26)

and

µ0
def
=

∫ ∞

0

Φ
(

− z/σ)ze−z dz (27)

=
1

2
+ (σ2 − 1)eσ

2/2Φ(−σ)− σ/
√
2π

respectively. In Appendix B, we show that

inf
y≥0

µ(y)

η(y)
> 0. (28)

It then follows from Theorem 1 that the optimal performance

curve ρ(α; T (·)) can be achieved by the following uniformly

optimal preprocessing function

Toptimal(y) =







1−
[

y − σ2 + σΦ′(y/σ−σ)
Φ(y/σ−σ)

]−1

, if y > 0,

1− η0
µ0
, if y = 0,

(29)

where Φ′(·) denotes the PDF of the standard normal distribu-

tion.
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α = m/n
0 1 2 3 4 5 6 7 8

Squared Correlation

0

0.2

0.4

0.6

0.8

1

Upper Bound

ε = 0.3
ε = 0.5
ε = 0.8

Fig. 3. Analytical predictions and numerical simulations for the noiseless
observation model. The blue curve corresponds to the theoretical upper bound
that no preprocessing function in the admissible set F can achieve. This upper
bound can be approached by a family of preprocessing functions T ε

α (·), as
ε → 0. Numerical results (for n = 4096) are averaged over 16 independent
trials, with the error bars indicating ±1 standard deviation.

Next, we consider the noiseless case, i.e., σ2 = 0 and yi =
∣

∣〈ai, ξ〉
∣

∣

2
. Here, the two functions η(y) and µ(y) take much

simpler forms:

η(y) = e−y and µ(y) = ye−y, (30)

but the challenge arises from the fact that, in this case,

inf
y≥0

µ(y)

η(y)
=
µ(0)

η(0)
= 0. (31)

As stated in Theorem 1, under (31), the optimal performance

curve ρ(α; T (·)) cannot be achieved by any admissible func-

tion T (·) ∈ F . In this case, we can construct a family

of admissible preprocessing functions whose performance

arbitrarily approaches ρ(α; T (·)). For any α > αweak, these

functions take the form of

T ε
α (y) =

cεα(y)

1 + cεα(y)
, (32)

where 0 < ε < 1 is a parameter. Substituting (30) into (21),

we have

cεα(y) = max

{

vεα
βα(y − 1)

βα + y
,−1 + ε

}

,

and vεα is a positive constant that can be uniquely determined

by the following equation:
∫ ∞

0

cεα(y)(y − 1)e−y dy = 1/α.

We show in Section IV-C that, as ε → 0, the performance

of T ε
α (·) will converge to the optimal performance curve

ρoptimal(α). This is demonstrated in Figure 3, where we com-

pare the performance curves of the preprocessing functions

(32) for three different values of ε against the theoretical upper

bound ρoptimal(α). We see that, when ε = 0.3, the achievable

curve is already very close to ρoptimal(α).

III. TECHNICAL BACKGROUND

A. Asymptotic Characterizations of the Spectral Method

To set the stage for proving our main results on optimal

design, we first review the precise asymptotic characterizations

of the spectral method obtained in previous work [14], [15].

Let S and Y be the random variables defined in (9) and

(16), respectively. Recall the admissible set F defined in (17).

For any preprocessing function T (·) ∈ F , the support of the

probability measure of the random variable T (Y ) is bounded.

Let τ denote the upper boundary of the support, i.e.,

τ
def
= sup

y∈ΓY

T (y) <∞.

We consider two functions

φ(λ)
def
= λES,Y

[T (Y ) |S|2
λ− T (Y )

]

(33)

and

ψα(λ)
def
= λ/α+ λEY

[ T (Y )

λ− T (Y )

]

, (34)

both defined on the open interval (τ,∞). Within their domains,

it is easy to check that both functions are convex and that φ(λ)
is strictly decreasing. Consequently, if the following conditions

ψα(λ
∗) = φ(λ∗) (35)

and

ψ′
α(λ

∗) > 0, (36)

hold for some λ∗ ∈ (τ,∞), then that λ∗ must be unique.

Theorem 2 (Asymptotic characterization [14], [15]): Let the

target signal ξ be an arbitrary vector in C
n with ‖ξ‖ = 1.

Assume that the preprocessing function T (·) ∈ F , and that

the sensing vectors ai ∼i.i.d. CN (0, In). As m,n → ∞ with

m/n→ α ∈ (0,∞), we have
∣

∣〈ξ,x1〉
∣

∣

2

‖ξ‖2‖x1‖2
P−→ ρ(α; T (·)),

where the limit value on the right-hand side is

ρ(α; T (·)) def
=







ψ′

α(λ∗)
ψ′

α(λ∗)−φ′(λ∗) , if (35)(36) hold for λ∗ > τ,

0, otherwise.

(37)

The above theorem shows that, in the high-dimensional

limit, the squared correlation between ξ and the estimate x1

converges in probability to a deterministic value ρ(α; T (·)),
which can be exactly computed as in (37). Moreover, this

asymptotic prediction exhibits a phase transition phenomenon:

ρ(α; T (·)) is nonzero if and only if (35) and (36) hold for

some λ∗ > τ .

Remark 4: The asymptotic prediction stated in Theorem 2

was first obtained in [14] for the case of real-valued sensing

vectors. In that setting, the random variable S in (33) and

(34) should be drawn from N (0, 1). Additionally, [14] makes

an assumption that T (y) ≥ 0. Later, Mondelli and Montanari

show that the same characterization holds for the complex-

valued case. They also removed the restriction that T (y) be

positive by generalizing a result for spiked random positive

semidefinite matrices [16] to spiked Hermitian matrices. In

[14], [15], there is also a technical assumption that, as λ
approaches τ from the right,

lim
λ→τ+

EY

[ T (Y )

(λ− T (Y ))2

]

= lim
λ→τ+

ES,Y

[ T (Y )|S|2
λ− T (Y )

]

= ∞.

(38)
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However, a close inspection of the arguments in [14] (es-

pecially those in Propositions 2, 3, and 4 there) will show

that the first equality in (38) is used to guarantee that φ(λ)
intersects with a modified version of ψα(λ) at a point λ∗ > τ
whereas the second equality in (38) is needed in the proof of

an unrelated result. Neither condition will be necessary here,

if we present the limit value ρ(α; T (·)) in the form of (37).

B. Reformulations of the Optimal Design Problem

The optimal design problem formulated in (6) seeks to find

the supremum of ρ(α; T (·)) over all admissible preprocessing

functions in the set F . Using the asymptotic characterizations

of ρ(α; T (·)) given in (37), we can convert the problem to

sup
T (·)∈F

ψ′
α(λ

∗)

ψ′
α(λ

∗)− φ′(λ∗)

s.t. ψα(λ
∗) = φ(λ∗) and ψ′

α(λ
∗) > 0 for some λ∗ > τ.

.

For a given T (·) and a given α, it is possible that there is no

λ∗ > τ satisfying the equality and inequality constraints in

the above optimization problem. In that case, the value of the

objective function is understood to be equal to 0.

Finding the supremum of
ψ′

α(λ∗)
ψ′

α(λ∗)−φ′(λ∗) is equivalent to

finding the infimum of
−φ′(λ∗)
ψ′

α(λ∗) , where the numerator −φ′(λ∗)
is positive due to the monotonicity of φ(λ). We also rewrite

the expectations in (33) and (34) in terms of η(y) and µ(y)
defined in (10) and (11), as

φ(λ) = λ

∫

ΓY

T (y)

λ− T (y)
µ(y) dy

ψα(λ) = λ/α+ λ

∫

ΓY

T (y)

λ− T (y)
η(y) dy.

Taking derivatives then gives us

inf
T (·)∈F

∫

ΓY

[ T (y)
λ∗−T (y)

]2
µ(y) dy

1/α−
∫

ΓY
[ T (y)
λ∗−T (y) ]

2η(y) dy
(39)

s.t.

∫

ΓY

T (y)
λ∗−T (y) [µ(y)− η(y)] dy = 1/α

and

∫

ΓY

[ T (y)
λ∗−T (y)

]2
η(y) dy < 1/α for some λ∗ > τ.

The problem in (39) still appears unwieldy. To further

simplify it, we observe that the objective function of (39) as

well as the equality and inequality constraints are all scale

invariant since they are related to T (y) only through the ratio
T (y)

λ∗−T (y) . Thus, if (T (y), λ∗) is a feasible solution satisfying

the constraints, so will be (aT (y), aλ∗) for any constant

a > 0. Meanwhile, the value of the objective function remains

unchanged. Exploiting this invariance, we can always assume

λ∗ = 1, without loss of generality. This allows us to introduce

a change of variables

c(y)
def
=

T (y)

1− T (y)
, (40)

and simplify (39) as

(P0) V0
def
= inf

c(·)∈Fc

∫

ΓY
[c(y)]2µ(y) dy

1/α−
∫

ΓY
[c(y)]2η(y) dy

(41)

s.t.

∫

ΓY

c(y)[µ(y)− η(y)] dy = 1/α (42)

and

∫

ΓY

[c(y)]2η(y) dy < 1/α, (43)

where Fc denotes the admissible set for c(y), defined as

Fc def
=

{

c(·) : 0 < sup
y∈ΓY

c(y) <∞ and inf
y∈ΓY

c(y) > −1
}

.

(44)

Note that the mapping (40), or equivalently, T (y) = c(y)
1+c(y) ,

provides a one-to-one correspondance between Fc and

F ∩
{

T (·) : sup
y∈ΓY

T (y) < 1
}

.

The additional constraint that supy∈ΓY
T (y) < 1 is both nec-

essary and sufficient for our purpose, as we have fixed λ∗ = 1.

Moreover, we adopt the following notational convention: if

there is no feasible c(y) ∈ Fc satisfying the constraints (42)

and (43), the value of the objective function V0 = +∞.

It will be more convenient to study

(P1) V1
def
= inf

c(·)∈H

∫

ΓY
[c(y)]2µ(y) dy

1/α−
∫

ΓY
[c(y)]2η(y) dy

(45)

s.t. (42) and (43) hold, (46)

where we simply relax Fc in (44) to a larger set

H def
=

{

c(·) :
∫

ΓY

[c(y)]2(η(y) + µ(y)) dy <∞
}

. (47)

We note that any function in Fc is finitely bounded. It then

follows from (12) that the function must belong to H. In the

next section, we will present a closed-form solution to (P1).
It forms the foundation of our proof of Theorem 1.

IV. PROOF OF THEOREM 1

In this section, we prove Theorem 1 in three steps. First,

we show in Section IV-A that the right-hand side of (19) is an

upper bound for the optimal performance curve ρoptimal(α).
To establish equality, we consider two cases, depending on

the value of infy µ(y)/η(y). When infy µ(y)/η(y) > 0, we

show in Section IV-B that the aforementioned upper bound

can be achieved by the uniformly optimal solution given in

(20), and that this optimal solution belongs to the feasible

set F . The remaining case, when infy µ(y)/η(y) = 0, is

considered in Section IV-C, where we construct a family

of admissible functions
{

T ε
α (·)

}

0<ε<1
and show that their

performance curves approach the upper bound.

A. An Upper Bound for ρoptimal(α)

Following the discussions in Section III-B, we know that

ρoptimal(α) =
1

1 + V0
≤ 1

1 + V1
, (48)

where V0 and V1 are the optimal values of (P0) and (P1),
respectively. That V1 ≤ V0 is due to the fact that the set Fc
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in (P0) is a subset of H in (P1). In what follows, we present

a solution of (P1).
For each β > 0, the (sublevel set) condition

∫

ΓY
[c(y)]2µ(y) dy

1/α−
∫

ΓY
[c(y)]2η(y) dy

≤ β

is equivalent to
∫

ΓY
[c(y)]2[µ(y)/β + η(y)] dy ≤ 1/α. To

lighten the notation, we define two functionals

Q(c(·), β) def
=

∫

ΓY

[c(y)]2[µ(y)/β + η(y)] dy, (49)

and

L(c(·)) def
=

∫

ΓY

c(y)[µ(y)− η(y)] dy. (50)

It is easy to see that (P1) is equivalent to

V1 = inf
Ωβ is nonempty

β, (51)

where

Ωβ
def
=

{

c(·) ∈ H : Q(c(·), β) ≤ 1
α and L(c(·)) = 1

α

}

. (52)

Note that we can omit the quadratic constraint in (43) as it is

implied by Q(c(·), β) ≤ 1
α .

Lemma 1: For any β > 0,

1

α2f(β)
= min
c(·)∈H

Q(c(·), β)

s.t. L(c(·)) = 1/α

, (53)

where f(β) is the function defined in (18). Moreover, the

optimal solution to (53) is given by

c∗(y) =
µ(y)− η(y)

[αf(β)](η(y) + µ(y)/β)
. (54)

Proof: Since η(y) + µ(y)/β is a nonnegative function,

we can define a weighted L2 function space, where the inner

product between two functions f1(y) and f2(y) is

〈f1(y), f2(y)〉β def
=

∫

ΓY

f1(y)f2(y)[η(y) + µ(y)/β] dy.

The optimization problem (53) then becomes that of finding

a minimum norm solution on a linear variety, i.e.,

min
c(·)

〈c(y), c(y)〉β

s.t. 〈c(y), µ(y)− η(y)

η(y) + µ(y)/β
〉β = 1/α

.

The optimal solution is well-known (see, e.g., [17]). It should

take the form of

c∗(y) = v
µ(y)− η(y)

η(y) + µ(y)/β
,

where the scaling constant v is determined by the constraint
∫

ΓY
c∗(y)[µ(y)− η(y)] dy = 1/α. Solving this equation gives

v = 1/[αf(β)] and thus (54), the squared norm of which gives

us the left-hand side of (53).

Applying Lemma 1, we know that the set Ωβ in (52) is

nonempty if and only if

f(β) ≥ 1/α. (55)

From its definition given in (18), f(β) is a strictly increasing

function, with

lim
β→0

f(β) = 0 and lim
β→∞

f(β) = 1/αweak.

Consequently, for α ≤ αweak, the condition (55) cannot be

satisfied by any finite β. In this case, the optimal value of (51)

is V1 = ∞. Using (48), we conclude that

ρoptimal(α) = 0 for α ≤ αweak,

recovering the results previously obtained in [15].

When α > αweak, there is a unique βα > 0 such that

f(βα) = 1/α. It follows from the monotonicity of f(β) that

V1 = βα. Substituting this into (48), we get

ρoptimal(α) ≤ (1 + βα)
−1 for α > αweak. (56)

In the next two subsections, we show that this inequality is in

fact an equality.

B. Uniformly Optimal Preprocessing Function

First consider the case when infy µ(y)/η(y) > 0. In all of

our subsequent discussions, we shall also assume that αweak <
∞. For each α > αweak, we know from Lemma 1 that the

upper bound in (56) is achieved by

c∗(y) =
µ(y)− η(y)

[αf(βα)](η(y) + µ(y)/βα)
=

µ(y)− η(y)

η(y) + µ(y)/βα
,

(57)

where the second equality is due to the fact that f(βα) = 1/α.

It is easy to verify that

− 1 < inf
y∈ΓY

c∗(y) ≤ sup
y∈ΓY

c∗(y) ≤ βα. (58)

From (40), the corresponding preprocessing function is

T (y) =
c∗(y)

1 + c∗(y)
=

1

1 + 1/βα

[

1− η(y)

µ(y)

]

.

As mentioned in Section III-B, the performance of the spectral

algorithm is scale invariant. So a scaled version

Toptimal(y) = 1− η(y)

µ(y)
(59)

can achieve the same performance. Next, we show that

Toptimal(y) ∈ F . This would then imply that ρoptimal(α) ≥
(1 + βα)

−1, which, together with (56), gives us (19).

Since η(y) ≥ 0 and µ(y) ≥ 0,

τ = sup
y∈ΓY

Toptimal(y) ≤ 1.

Under the condition infy µ(y)/η(y) > 0, we also have

infy∈ΓY
Toptimal(y) > −∞. What remains to be shown is

that τ > 0. To that end, we note that, under the assumption

αweak < ∞, there must exist y for which µ(y) > η(y).
(See our discussions at the end of Appendix A.) This then

guarantees that τ > 0.
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C. Truncated Preprocessing Functions

In this section, we consider the case when

inf
y
µ(y)/η(y) = 0. (60)

Under (60), the function Toptimal(·) in (59) is not lower

bounded, and thus it is not in the admissible set F . By the

uniqueness of (P1) and since F is a subset of H in (47),

we can conclude that the right-hand side of (19) cannot be

achieved by any function in F in this case.

Next, we show that the family of preprocessing functions
{

T ε
α (·) ∈ F

}

0<ε<1
defined in (21) can approach the optimal

performance curve, i.e.,

lim
ε→0

ρ(α; T ε
α (·)) = ρoptimal(α) (61)

for all α > αweak.

We start by showing that the scaler vεα in (21) can indeed be

uniquely determined by the linear constraint L(cεα(·)) = 1/α.

To that end, we define

cv(y) = max

{

v
µ(y)− η(y)

η(y) + µ(y)/βα
,−1 + ε

}

, (62)

with v ≥ 0 being a varying parameter, and examine

h(v)
def
=

∫

ΓY

cv(y)[µ(y)− η(y)] dy (63)

=

∫

ΓY

max

{

v
µ(y)− η(y)

η(y) + µ(y)/βα
,−1 + ε

}

[µ(y)− η(y)] dy.

We note that −1 + ε < 0 and cv(y)[µ(y) − η(y)] ≥ 0 for all

y ∈ ΓY . A moment of thought will convince us that h(v) is

an increasing function of v for v ≥ 0. Moreover, h(0) = 0. To

study the limit of the function as v → ∞, we denote by Γ+
Y

the subset over which µ(y) > η(y). As shown in Appendix A,

when αweak <∞, the subset Γ+
Y is nonempty. We have

h(v) ≥
∫

Γ+

Y

cv(y)[µ(y)− η(y)] dy

= v

∫

Γ+

Y

[µ(y)− η(y)]2

η(y) + µ(y)/βα
dy,

which tends to ∞ as v → ∞. It then follows that there exists

a unique positive solution vεα to the equation h(v) = 1/α.

To establish (61), we recall our reformulations of the

optimal design problem presented in Section III-B. Given the

equivalence of the optimal design problem and the optimiza-

tion problem (P0) in (41), our tasks boil down to showing that

(1) cεα(y) ∈ Fc and (2) for each α > αweak,

lim
ε→0

∫

ΓY

[cεα(y)]
2η(y) dy =

∫

ΓY

[c∗(y)]2η(y) dy, (64)

lim
ε→0

∫

ΓY

[cεα(y)]
2µ(y) dy =

∫

ΓY

[c∗(y)]2µ(y) dy, (65)

where c∗(y) is the optimal solution given in (57). Note that

the linear constraint (42) in (P0) is always satisfied, due

to the way we set the scalar vεα in (21). The quadratic

constraint (43) will also be satisfied for all sufficiently small

ε, given the convergence in (64) and the fact that we have
∫

ΓY
[c∗(y)]2η(y) dy < 1/α.

By its definition in (21), it is easy to see that

− 1 + ε ≤ inf
y∈ΓY

cεα(y) ≤ sup
y∈ΓY

cεα(y) ≤ vεαβα. (66)

Moreover, since µ(y) > η(y) over a nonempty subset of ΓY ,

we have supy∈ΓY
cεα(y) > 0. Thus, we can verify that cεα(y) ∈

Fc.
Next, we show that vεα → 1 as ε→ 0. Recall that

L(cεα(·)) = L(c∗(·)) = 1/α. (67)

The latter equality implies that

∫

ΓY

max
{

c∗(y),−1 + ε
}

[µ(y)− η(y)] dy ≤ 1/α,

which, using the notation introduced in (62) and (63), can be

written as h(1) ≤ 1/α. Meanwhile, the first equality in (67)

can be written as h(vεα) = 1/α. Since h(v) is an increasing

function of v, we must have vεα ≥ 1.

Define two sets Γ1 and Γ2, with Γ1 ∪ Γ2 = ΓY , such that

cεα(y) = −1 + ε for y ∈ Γ1 and cεα(y) = vεα
µ(y)−η(y)

η(y)+µ(y)/βα
for

y ∈ Γ2. Similarly, define a subset Γ′
1 such that c∗(y) ≤ −1+ε

for y ∈ Γ′
1. We can easily verify that Γ′

1 ⊂ Γ1, since cεα(y) =
max

{

vεαc
∗(y),−1 + ε

}

and vεα ≥ 1. It follows from (67) that

0 =L(c∗(·))− L(cεα(·))

=

∫

Γ′

1

[

c∗(y)− (−1 + ε)
] (

µ(y)− η(y)
)

dy

+

∫

Γ1\Γ′

1

[

c∗(y)− (−1 + ε)
] (

µ(y)− η(y)
)

dy

− (vεα − 1)

∫

Γ2

µ(y)− η(y)

η(y) + µ(y)/βα

(

µ(y)− η(y)
)

dy.

(68)

For y ∈ Γ1 \ Γ′
1, we know µ(y) − η(y) < 0 and c∗(y) ≥

−1 + ε. Thus,
∫

Γ1\Γ′

1

[

c∗(y)− (−1 + ε)
] (

µ(y)− η(y)
)

dy ≤ 0. (69)

Also for y ∈ Γ′
1, we have −1 ≤ c∗(y) ≤ (−1 + ε), so

∣

∣

∣

∣

∣

∫

Γ′

1

[

c∗(y)− (−1 + ε)
] (

µ(y)− η(y)
)

dy

∣

∣

∣

∣

∣

≤ ε

∫

ΓY

[µ(y) + η(y)] dy = 2ε. (70)

Substituting (69) and (70) into (68), we get

(vεα − 1)

∫

Γ2

[µ(y)− η(y)]2

η(y) + µ(y)/βα
dy ≤ 2ε.

Let Γ+
Y be the subset such that µ(y) > η(y) for y ∈ Γ+

Y . We

must have Γ+
Y ⊂ Γ2. It follows that

1 ≤ vεα ≤ 1 + 2ε
(

∫

Γ+

Y

[µ(y)− η(y)]2

η(y) + µ(y)/βα
dy

)−1

and thus vεα → 1 as ε→ 0.
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What remain to be shown are (64) and (65). The proofs for

the two cases are essentially identical, so we only show how

to establish (64), as follows:
∣

∣

∣

∣

∣

∫

ΓY

([cεα(y)]
2 − [c∗(y)]2)η(y) dy

∣

∣

∣

∣

∣

≤
∫

ΓY

∣

∣cεα(y)− c∗(y)
∣

∣

(
∣

∣cεα(y)
∣

∣+
∣

∣c∗(y)
∣

∣

)

η(y) dy

(a)

≤ Cε

∫

ΓY

∣

∣cεα(y)− c∗(y)
∣

∣ η(y) dy

≤ Cε

∫

ΓY

∣

∣

∣
cεα(y)−max

{

c∗(y),−1 + ε
}

∣

∣

∣
η(y) dy

+ Cε

∫

ΓY

∣

∣

∣
max

{

c∗(y),−1 + ε
}

− c∗(y)
∣

∣

∣
η(y) dy

(b)

≤ Cε|vεα − 1|
∫

ΓY

∣

∣c∗(y)
∣

∣ η(y) dy + Cε · ε
∫

ΓY

η(y) dy

(c)

≤ Cε|vεα − 1| (1 + βα) + Cε · ε.
Here, to obtain (a), we have used the boundedness of cεα(y) as

given in (66) and that of c∗(y) as given in (58). Consequently,

it is sufficient to set the constant to be

Cε = 2 + (vεα + 1)βα.

To reach (b), we have used the following properties:
∣

∣max {x,−1 + ε} −max {y,−1 + ε}
∣

∣ ≤|x− y|
and

∣

∣max {x,−1 + ε} − x
∣

∣ ≤ ε

for any x, y ≥ −1. Finally, the inequality (c) follows from

the boundedness of
∣

∣c∗(y)
∣

∣ and the fact that
∫

ΓY
η(y) dy = 1.

Since vεα → 1 as ε→ 0, we have (64).

APPENDIX

A. Several properties of αweak

In this appendix, we show that the integral on the right-

hand side of (13) is always finite. In particular, we establish

the following fundamental lower bound on the weak recovery

threshold.

Proposition 1: For any sensing model given in (1), we have

αweak ≥ 1,

where the lower bound is achieved when yi =
∣

∣〈ai, ξ〉
∣

∣

2
.

Proof: Using the definition in (13), we have

α−1
weak =

∫

ΓY

(

µ(y)− η(y)
)2

η(y)
dy

=

∫

ΓY

[µ(y)]2

η(y)
dy − 2

∫

ΓY

µ(y) dy +

∫

ΓY

η(y) dy

=

∫

ΓY

[µ(y)]2

η(y)
dy − 1, (71)

where the last equality is due to (12). Thus, we just need to

show that
∫

ΓY

[µ(y)]2

η(y) dy ≤ 2.

Let Z = |S|, where S ∼ CN (0, 1). Let g(z) denote the

density function of Z. We have

[µ(y)]
2
=

[

∫ ∞

0

z2 p(y | z)g(z) dz
]2

≤
[

∫ ∞

0

z4 p(y | z)g(z) dz
][

∫ ∞

0

p(y | z)g(z) dz
]

=
[

∫ ∞

0

z4 p(y | z)g(z) dz
]

η(y),

where the bound is due to the Cauchy-Schwarz inequality.

Using this upper bound, we have

∫

ΓY

[µ(y)]
2

η(y)
dy ≤

∫ ∞

0

z4g(z)

∫

ΓY

p(y | z) dy dz

=

∫ ∞

0

z4g(z) dz

= E[Z4] = 2. (72)

For the noiseless channel described in Section II-B, we have

η(y) = e−y and µ(y) = ye−y for y ≥ 0. So
∫

ΓY

[µ(y)]2

η(y) dy =
∫∞
0
y2e−y = 2, which achieves the bound in (72).

Remark 5: When the sensing vectors are real-valued Gaus-

sian random vectors, the lower bound for the weak recovery

threshold reduces to αweak ≥ 1/2. We can use the same proof

as above, with only one change: In (72), the random variable

Z = |S| with S ∼ N (0, 1). Thus, E[Z4] = 3.

In our proof of Theorem 1, we will also use the following

property: Let Γ+
Y

def
=

{

y : µ(y) > η(y)
}

. If αweak < ∞, then

the subset Γ+
Y is nonempty, with

∫

Γ+

Y

η(y) dy > 0. To establish

this, we recall from (71) that αweak <∞ if and only if

1 <

∫

ΓY

[µ(y)/η(y)]2η(y) dy

=

∫

Γ+

Y

[µ(y)/η(y)]2η(y) dy +

∫

ΓY \Γ+

Y

[µ(y)/η(y)]2η(y) dy

≤
∫

Γ+

Y

[µ(y)/η(y)]2η(y) dy +

∫

ΓY \Γ+

Y

η(y) dy (73)

≤
∫

Γ+

Y

[µ(y)/η(y)]2η(y) dy + 1, (74)

where (73) is due to the fact that µ(y)/η(y) ≤ 1 for y ∈
ΓY \Γ+

Y , and (74) is due to (12). Using (74), we can conclude

that
∫

Γ+

Y

[µ(y)/η(y)]2η(y) dy > 0 and thus
∫

Γ+

Y

η(y) dy > 0.

B. Proof of (28)

We note that

inf
y≥0

µ(y)

η(y)
= min

{

inf
y>0

µ(y)

η(y)
,
µ0

η0

}

.

By construction, η0, µ0 as defined in (26) and (27) are both

positive. Thus, to show (28), we just need to prove that

infy>0
µ(y)
η(y) > 0. To that end, we note that, for y > 0,

µ(y)

η(y)
= σh(y/σ − σ), (75)

where h(x)
def
= x + Φ′(x)

Φ(x) , with Φ(x) and Φ′(x) denoting

the CDF and the PDF of the standard normal distribution,
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respectively. The function h(x) is related to the inverse Mill’s

ratio. It is a strictly increasing function, and h(x) > 0 for all

x. See, e.g., [18] for a proof. It follows that

inf
y>0

µ(y)

η(y)
= lim
y→0+

µ(y)

η(y)
= σh(−σ) > 0.
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